Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Zool Res ; 44(3): 505-521, 2023 May 18.
Article in English | MEDLINE | ID: covidwho-2306427

ABSTRACT

Bacterial or viral infections, such as Brucella, mumps virus, herpes simplex virus, and Zika virus, destroy immune homeostasis of the testes, leading to spermatogenesis disorder and infertility. Of note, recent research shows that SARS-CoV-2 can infect male gonads and destroy Sertoli and Leydig cells, leading to male reproductive dysfunction. Due to the many side effects associated with antibiotic therapy, finding alternative treatments for inflammatory injury remains critical. Here, we found that Dmrt1 plays an important role in regulating testicular immune homeostasis. Knockdown of Dmrt1 in male mice inhibited spermatogenesis with a broad inflammatory response in seminiferous tubules and led to the loss of spermatogenic epithelial cells. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that Dmrt1 positively regulated the expression of Spry1, an inhibitory protein of the receptor tyrosine kinase (RTK) signaling pathway. Furthermore, immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP) analysis indicated that SPRY1 binds to nuclear factor kappa B1 (NF-κB1) to prevent nuclear translocation of p65, inhibit activation of NF-κB signaling, prevent excessive inflammatory reaction in the testis, and protect the integrity of the blood-testis barrier. In view of this newly identified Dmrt1- Spry1-NF-κB axis mechanism in the regulation of testicular immune homeostasis, our study opens new avenues for the prevention and treatment of male reproductive diseases in humans and livestock.


Subject(s)
COVID-19 , Rodent Diseases , Zika Virus Infection , Zika Virus , Humans , Male , Mice , Animals , Testis , NF-kappa B/metabolism , COVID-19/veterinary , SARS-CoV-2/metabolism , Homeostasis , Fertility , Zika Virus/metabolism , Zika Virus Infection/metabolism , Zika Virus Infection/veterinary , Membrane Proteins/metabolism , Phosphoproteins/metabolism , Phosphoproteins/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/pharmacology , Rodent Diseases/metabolism
2.
J Intensive Med ; 1(1): 52-58, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-2287212

ABSTRACT

Background: To analyze the correlation between clinical course and radiographic development on computed tomography (CT) in patients with confirmed coronavirus disease 2019 (COVID-19) and to provide more evidence for treatment. Methods: This retrospective, observational, cohort study enrolled 49 patients with Reverse transcription-polymerase chain reaction (RT-PCR)-confirmed COVID-19, which included 30 patients admitted to the intensive care unit (ICU) of Wuhan Third Hospital and 19 patients either admitted to or receiving telemedicine consultation from Shanghai General Hospital, Shanghai Xuhui Dahua Hospital, and hospitals in other provinces. CT scans were performed in all enrolled patients and the radiographic features including simple ground-glass opacities (GGOs), GGO with interlobular septal thickening, consolidations with GGO, and consolidations only were monitored by repeating the CT. The progression of these radiographic features was analyzed in combination with their clinical staging and the time interval between onset of symptoms to CT. Results: Based on illness severity, the 49 patients were classified into four stages: mild (n = 6), moderate (n = 12), severe (n = 16), and critically ill (n = 15). The CT findings were classified into three phases: early (n = 5), progression (n = 39), and recovery (n = 5). Among the 49 patients, 9 had bilateral diffuse GGO or diffuse consolidations (white lungs) and were counted as 18 lesions. Three patients had no abnormal findings on initial CT, but their repeat CT showed new lesions. In all, we identified 892 lesions including simple GGO, GGO with interlobular septal thickening, consolidations with GGO, and consolidations only. Conclusions: Most patients had pulmonary lesions on the posterior, inferior, and peripheral lung fields on CT. The development of GGO with interlobular septal thickening, GGO with consolidations, and consolidations only happened mainly between day 8 and 14. The emergence of consolidations may suggest the progression to the severe phase of the illness, whereas simple consolidations or "white lung" may suggest a critically ill phase.

3.
Talanta ; 258: 124470, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-2282954

ABSTRACT

During global outbreaks such as COVID-19, regular nucleic acid amplification tests (NAATs) have posed unprecedented burden on hospital resources. Data of traditional NAATs are manually analyzed post assay. Integration of artificial intelligence (AI) with on-chip assays give rise to novel analytical platforms via data-driven models. Here, we combined paper microfluidics, portable optoelectronic system with deep learning for SARS-CoV-2 detection. The system was quite streamlined with low power dissipation. Pixel by pixel signals reflecting amplification of synthesized SARS-CoV-2 templates (containing ORF1ab, N and E genes) can be real-time processed. Then, the data were synchronously fed to the neural networks for early prediction analysis. Instead of the quantification cycle (Cq) based analytics, reaction dynamics hidden at the early stage of amplification curve were utilized by neural networks for predicting subsequent data. Qualitative and quantitative analysis of the 40-cycle NAATs can be achieved at the end of 22nd cycle, reducing time cost by 45%. In particular, the attention mechanism based deep learning model trained by microfluidics-generated data can be seamlessly adapted to multiple clinical datasets including readouts of SARS-CoV-2 detection. Accuracy, sensitivity and specificity of the prediction can reach up to 98.1%, 97.6% and 98.6%, respectively. The approach can be compatible with the most advanced sensing technologies and AI algorithms to inspire ample innovations in fields of fundamental research and clinical settings.


Subject(s)
COVID-19 , Deep Learning , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Artificial Intelligence , Microfluidics , Nucleic Acid Amplification Techniques , Sensitivity and Specificity
4.
J Virol ; 97(4): e0012823, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2264675

ABSTRACT

Coronavirus membrane protein is a major component of the viral envelope and plays a central role in the viral life cycle. Studies of the coronavirus membrane protein (M) have mainly focused on its role in viral assembly and budding, but whether M protein is involved in the initial stage of viral replication remains unclear. In this study, eight proteins in transmissible gastroenteritis virus (TGEV)-infected cells coimmunoprecipitated with monoclonal antibodies (MAb) against M protein in PK-15 cells, heat shock cognate protein 70 (HSC70), and clathrin were identified by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry (MALDI-TOF MS). Further studies demonstrated that HSC70 and TGEV M colocalized on the cell surface in early stages of TGEV infection; specifically, HSC70 bound M protein through its substrate-binding domain (SBD) and preincubation of TGEV with anti-M serum to block the interaction of M and HSC70 reduced the internalization of TGEV, thus demonstrating that the M-HSC70 interaction mediates the internalization of TGEV. Remarkably, the process of internalization was dependent on clathrin-mediated endocytosis (CME) in PK-15 cells. Furthermore, inhibition of the ATPase activity of HSC70 reduced the efficiency of CME. Collectively, our results indicated that HSC70 is a newly identified host factor involved in TGEV infection. Taken together, our findings clearly illustrate a novel role for TGEV M protein in the viral life cycle and present a unique strategy used by HSC70 to promote TGEV infection in which the interaction with M protein directs viral internalization. These studies provide new insights into the life cycle of coronaviruses. IMPORTANCE TGEV is the causative agent of porcine diarrhea, a viral disease that economically affects the pig industry in many countries. However, the molecular mechanisms underlying viral replication remain incompletely understood. Here, we provide evidence of a previously undescribed role of M protein in viral replication during early stages. We also identified HSC70 as a new host factor affecting TGEV infection. We demonstrate that the interaction between M and HSC70 directs TGEV internalization in a manner dependent on CME, thus revealing a novel mechanism for TGEV replication. We believe that this study may change our understanding of the first steps of infection of cells with coronavirus. This study should facilitate the development of anti-TGEV therapeutic agents by targeting the host factors and may provide a new strategy for the control of porcine diarrhea.


Subject(s)
Clathrin , Coronavirus M Proteins , Endocytosis , HSC70 Heat-Shock Proteins , Transmissible gastroenteritis virus , Virus Internalization , Transmissible gastroenteritis virus/physiology , Clathrin/metabolism , Coronavirus M Proteins/metabolism , Cell Line , Humans , Animals , Virus Replication
5.
Int J Biol Macromol ; 230: 123191, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2179329

ABSTRACT

Viral mRNA of coronavirus translates in an eIF4E-dependent manner, and the phosphorylation of eIF4E can modulate this process, but the role of p-eIF4E in coronavirus infection is not yet entirely evident. p-eIF4E favors the translation of selected mRNAs, specifically the mRNAs that encode proteins associated with cell proliferation, inflammation, the extracellular matrix, and tumor formation and metastasis. In the present work, two rounds of TMT relative quantitative proteomics were used to screen 77 cellular factors that are upregulated upon infection by coronavirus PEDV and are potentially susceptible to a high level of p-eIF4E. PEDV infection increased the translation level of ribosomal protein lateral stalk subunit RPLp2 (but not subunit RPLp0/1) in a p-eIF4E-dependent manner. The bicistronic dual-reporter assay and polysome profile showed that RPLp2 is essential for translating the viral mRNA of PEDV. RNA binding protein and immunoprecipitation assay showed that RPLp2 interacted with PEDV 5'UTR via association with eIF4E. Moreover, the cap pull-down assay showed that the viral nucleocapsid protein is recruited in m7GTP-precipitated complexes with the assistance of RPLp2. The heterogeneous ribosomes, which are different in composition, regulate the selective translation of specific mRNAs. Our study proves that viral mRNA and protein utilize translation factors and heterogeneous ribosomes for preferential translation initiation. This previously uncharacterized process may be involved in the selective translation of coronavirus.


Subject(s)
Coronavirus Infections , Coronavirus , Humans , Eukaryotic Initiation Factor-4E/metabolism , Protein Biosynthesis , Coronavirus/genetics , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(5): 497-501, 2022 May.
Article in Chinese | MEDLINE | ID: covidwho-1903522

ABSTRACT

OBJECTIVE: To evaluate the effect of thymosin alpha 1 on the prognosis of patients with coronavirus disease 2019 (COVID-19). METHODS: A retrospective cohort study was performed to collect clinical data of 95 patients treated by Shanghai Aid Medical Team in Wuhan Third Hospital during January 31, 2020 and March 4, 2020, who were confirmed COVID-19. They were divided into two groups according to whether they were treated with thymosin alpha 1 after admission. The 28-day mortality (primary outcome), and 28-ventilator-free-day, lymphocyte count (LYM) level, C-reactive protein (CRP) level (secondary outcomes) were compared between two groups. Survival analysis was performed using the Kaplan-Meier curve. The effect of thymosin alpha 1 on 28-day survival was evaluated with Cox regression model. RESULTS: Among the 95 patients, there were 31 cases in thymosin group and 64 cases in non-thymosin group; 29 patients died 28 days after admission, including 11 cases (35.5%) in thymosin group and 18 cases (28.1%) in non-thymosin group. Kaplan-Meier survival curve showed that thymosin alpha 1 could improve the 28-day survival of patients with COVID-19, but the univariate Cox model analysis showed that the difference was not statistically significant [hazard ratio (HR) = 0.48, 95% confidence interval (95%CI) was 0.20-1.14, P = 0.098]; multivariate Cox model analysis showed that thymosin alpha 1 was the factor to improve the 28-day mortality (HR = 0.15, 95%CI was 0.04-0.55, P = 0.004), old age (HR = 1.10, 95%CI was 1.05-1.15, P < 0.001), accompanied by chronic renal dysfunction (HR = 42.35, 95%CI was 2.77-648.64, P = 0.007), decrease of LYM at admission (HR = 0.15, 95%CI was 0.04-0.60, P = 0.007) and the use of methylprednisolone (HR = 4.59, 95%CI was 1.26-16.67, P = 0.021) were also risk factors for the increase of 28-day mortality. The use of immunoglobulin and antiviral drugs abidol and ganciclovir did not affect the 28-day mortality. After adjustment for age, gender, LYM and other factors, weighted multivariate Cox analysis model showed thymosin alpha 1 could significantly improve the 28-day survival of COVID-19 patients (HR = 0.45, 95%CI was 0.25-0.84, P = 0.012). In terms of secondary outcomes, no statistical difference (all P > 0.05) was found between two groups in days without ventilator at 28 days after admission (days: 17.97±13.56 vs. 20.09±12.67) and the increase of LYM at 7 days after admission [×109/L: -0.07 (-0.23, 0.43) vs. 0.12 (-0.54, 0.41)]. But the decrease of CRP at 7 days after admission in thymosin alpha group was significantly greater than that in non-thymosin group [mg/L: 39.99 (8.44, 82.22) vs. 0.53 (-7.78, 22.93), P < 0.05]. CONCLUSION: Thymosin alpha 1 may improve 28-day mortality and inflammation state in COVID-19 patients.


Subject(s)
COVID-19 , China , Humans , Prognosis , ROC Curve , Retrospective Studies , Thymalfasin/therapeutic use
7.
World J Clin Cases ; 9(28): 8388-8403, 2021 Oct 06.
Article in English | MEDLINE | ID: covidwho-1513223

ABSTRACT

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) pandemic is a global threat caused by the severe acute respiratory syndrome coronavirus-2. AIM: To develop and validate a risk stratification tool for the early prediction of intensive care unit (ICU) admission among COVID-19 patients at hospital admission. METHODS: The training cohort included COVID-19 patients admitted to the Wuhan Third Hospital. We selected 13 of 65 baseline laboratory results to assess ICU admission risk, which were used to develop a risk prediction model with the random forest (RF) algorithm. A nomogram for the logistic regression model was built based on six selected variables. The predicted models were carefully calibrated, and the predictive performance was evaluated and compared with two previously published models. RESULTS: There were 681 and 296 patients in the training and validation cohorts, respectively. The patients in the training cohort were older than those in the validation cohort (median age: 63.0 vs 49.0 years, P < 0.001), and the percentages of male gender were similar (49.6% vs 49.3%, P = 0.958). The top predictors selected in the RF model were neutrophil-to-lymphocyte ratio, age, lactate dehydrogenase, C-reactive protein, creatinine, D-dimer, albumin, procalcitonin, glucose, platelet, total bilirubin, lactate and creatine kinase. The accuracy, sensitivity and specificity for the RF model were 91%, 88% and 93%, respectively, higher than those for the logistic regression model. The area under the receiver operating characteristic curve of our model was much better than those of two other published methods (0.90 vs 0.82 and 0.75). Model A underestimated risk of ICU admission in patients with a predicted risk less than 30%, whereas the RF risk score demonstrated excellent ability to categorize patients into different risk strata. Our predictive model provided a larger standardized net benefit across the major high-risk range compared with model A. CONCLUSION: Our model can identify ICU admission risk in COVID-19 patients at admission, who can then receive prompt care, thus improving medical resource allocation.

8.
BMC Infect Dis ; 21(1): 955, 2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-1414111

ABSTRACT

BACKGROUND: Our goal is to further elucidate the clinical condition and prognosis of patients with severe acute COVID-19 with EBV reactivation. METHOD: This is a retrospective single-center study of COVID-19 patients admitted to the intensive care unit of Wuhan No. 3 Hospital (January 31 to March 27, 2020). According to whether Epstein-Barr virus reactivation was detected, the patients were divided into an EBV group and a Non-EBV group. Baseline data were collected including epidemiological, larithmics, clinical and imaging characteristics, and laboratory examination data. RESULTS: Of the 128 patients with COVID-19, 17 (13.3%) were infected with Epstein-Barr virus reactivation. In the symptoms,the rate of tachypnoea in the EBV group was apparently higher than that in the Non-EBV group. In lab tests, the lymphocyte and albumin of EBV group decreased more significantly than Non-EBV group, and the D-dimer and serum calcium of EBV group was higher than Non-EBV group. Regarding the infection index, CRP of EBV group was apparently above the Non-EBV group, and no significant difference was found in procalcitonin of the two groups. The incidence of respiratory failure, ARDS, and hypoproteinaemia of EBV group had more incidence than Non-EBV group. The 28-day and 14-day mortality rates of EBV group was significantly higher than that of Non-EBV group. CONCLUSIONS: In the COVID-19 patients, patients with EBV reactivation had higher 28-day and 14-day mortality rates and received more immuno-supportive treatment than patients of Non-EBV group.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , Critical Illness , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/epidemiology , Herpesvirus 4, Human , Humans , Retrospective Studies , SARS-CoV-2 , Virus Activation
9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 29(4): 1295-1300, 2021 Aug.
Article in Chinese | MEDLINE | ID: covidwho-1346784

ABSTRACT

OBJECTIVE: To investigate the clinical characteristic of coagulation, possible causes and countermeasures of patients with severe corona virus disease 2019 (COVID-19). METHODS: The clinical data of the 142 patients diagnosed as COVID-19 at Wuhan Third Hospital in Wuhan, China, from February 10 to February 16, 2020 were collected and analyzed retrospective. Among the patients, 17 cases of dead patients were divided into observe group, and 125 cases of cured patients were divided into control group. The clinical characteristics, laboratory tests, influencing factors, anticoagulant therapy, embolization and bleeding events of the two groups were observed. RESULTS: The average hospital stay time in 142 patients was 22 d. For the 17 dead patients in the observe group, the average hospital stay time was 9.9 d, and the D-dimer, prothrombin time, WBC count and Padua score of the patients in the observe group were significantly higher as compared with the patients in the control group. PT(OR=1.064, 95%CI 1.012-1.119) and D-D(OR=1.045, 95%CI 1.027-1.064) were the independent risk factors that causing the death of COVID-19 patients. Among the patients, 36(25.4%) patients received low-molecular-weight heparin for anticoagulant therapy, with the average course of 9.6 d. The cumulative incidence of the embolism of the patients in the observe group was 7(41.2%), while 2(11.8%) patients developed to deep vein thrombosis (DVT) and pulmonary embolism (PE), 3 (17.6%) patients occurred acute cerebral infarction and 2 (11.8%) patients occurred acute myocardial infarction. 3 (17.6%) dead patients revealed dominant disseminated intravascular coagulation (DIC). CONCLUSION: Most patients with severe COVID-19 shows a variety of risk factors for thrombus, and those with coagulation dysfunction shows a high dead rate and rapid disease progression. Therefore, coagulation indicators should be dynamically monitored, and mechanical and drug prevention should be actively carried out.


Subject(s)
COVID-19 , Disseminated Intravascular Coagulation , Anticoagulants , Humans , Retrospective Studies , SARS-CoV-2
10.
BMC Endocr Disord ; 21(1): 111, 2021 May 27.
Article in English | MEDLINE | ID: covidwho-1244921

ABSTRACT

BACKGROUND: Low free triiodothyronine (FT3) levels are related to a poor prognosis deterioration in patients with COVID-19 presenting with non-thyroidal illness syndrome (NTI). This study was designed to explore whether free thyroxin (FT4) or thyroid stimulating hormone (TSH) levels affected the mortality of patients with COVID-19 presenting with NTI. METHODS: Patients with COVID-19 complicated with NTI who were treated at our hospital were included in this retrospective study. Patients were divided into low TSH and normal TSH groups, as well as low and normal-high FT4 group, according to the reference range of TSH or FT4 levels. The 90-day mortality and critical illness rates were compared among patients with low and normal TSH levels, as well as among patients with low FT4 levels and normal-high FT4 levels; in addition, differences in demographic and laboratory data were compared. A Kaplan-Meier analysis and Cox proportional hazards models were used to assess the associations of TSH and FT4 levels with mortality. RESULTS: One hundred fifty patients with low FT3 levels and without a history of thyroid disease were included, 68% of whom had normal FT4 and TSH levels. Critical illness rates (74.07% VS 37.40%, P = 0.001) and mortality rates (51.85% VS 22.76%, P = 0.002) were significantly higher in the low TSH group than in the normal TSH group. Although no significant difference in the critical illness rate was found (P = 0.296), the mortality rate was significantly higher in the low FT4 group (P = 0.038). Low TSH levels were independently related to 90-day mortality (hazard ratio = 2.78, 95% CI:1.42-5.552, P = 0.003). CONCLUSIONS: Low FT4 and TSH concentrations were associated with mortality in patients with COVID-19 presenting with NTI; moreover, low TSH levels were an independent risk factor for mortality in these patients.


Subject(s)
COVID-19/epidemiology , COVID-19/mortality , Euthyroid Sick Syndromes/epidemiology , SARS-CoV-2 , Thyrotropin/blood , Thyroxine/blood , Adult , Aged , Aged, 80 and over , COVID-19/blood , Cohort Studies , Comorbidity , Euthyroid Sick Syndromes/blood , Female , Humans , Male , Middle Aged , Prognosis , Proportional Hazards Models , Retrospective Studies , Risk Factors , Thyrotropin/deficiency , Thyroxine/deficiency
11.
Sens Actuators B Chem ; 337: 129786, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1146819

ABSTRACT

The rapid and sensitive diagnosis of the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the crucial issues at the outbreak of the ongoing global pandemic that has no valid cure. Here, we propose a SARS-CoV-2 antibody conjugated magnetic graphene quantum dots (GQDs)-based magnetic relaxation switch (MRSw) that specifically recognizes the SARS-CoV-2. The probe of MRSw can be directly mixed with the test sample in a fully sealed vial without sample pretreatment, which largely reduces the testers' risk of infection during the operation. The closed-tube one-step strategy to detect SARS-CoV-2 is developed with home-made ultra-low field nuclear magnetic resonance (ULF NMR) relaxometry working at 118 µT. The magnetic GQDs-based probe shows ultra-high sensitivity in the detection of SARS-CoV-2 due to its high magnetic relaxivity, and the limit of detection is optimized to 248 Particles mL‒1. Meanwhile, the detection time in ULF NMR system is only 2 min, which can significantly improve the efficiency of detection. In short, the magnetic GQDs-based MRSw coupled with ULF NMR can realize a rapid, safe, and sensitive detection of SARS-CoV-2.

12.
Curr Med Sci ; 41(1): 46-50, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1081788

ABSTRACT

Positive nucleic acid (NA) results have been found in recovered and discharged COVID-19 patients, but the proportion is unclear. This study was designed to analyze the recurrent positive rate of NA results after consecutively negative results, and the relationship between the specific antibody production and positive NA rate. According to Strengthening the Reporting of Observational Studies in Epidemiology guidelines, data of inpatients in Sino-French New City Branch of Tongji Hospital between Jan. 28 and Mar. 6, 2020 were collected. A total of 564 COVID-19 patients over 14 years old who received the examinations of NA and antibodies against SARS-CoV-2 were included. Days of viral shedding and specific antibodies were recorded and assessed. Among NA tests in respiratory samples (throat swabs, nasopharyngeal swabs, sputum and flushing fluid in alveoli), the patients with all-negative NA results accounted for 17.20%, those with single-positive results for 46.63%, and those with multiple-positive results for 36.17% respectively. Besides, the recurrent positive NA results after consecutively negative results appeared in 66 patients (11.70%). For multiple-positive patients, median viral shedding duration was 20 days (range: 1 to 57 days). Of the 205 patients who received 2 or more antibody tests, 141 (68.78%) had decreased IgG and IgM concentrations. IgM decreased to normal range in 24 patients, with a median of 44 days from symptom onset. Viral shedding duration was not significantly correlated with gender, age, disease severity, changes in pulmonary imaging, and antibody concentration. It is concluded that antibody level and antibody change had no significant correlation with the positive rate of NA tests and the conversion rate after continuous negative NA tests. In order to reduce the recurrent positive proportion after discharge, 3 or more consecutive negative NA test results with test interval more than 24 h every time are suggested for the discharge or release from quarantine.


Subject(s)
Antibodies, Viral/analysis , COVID-19/diagnosis , SARS-CoV-2/physiology , Adult , Aged , Aged, 80 and over , COVID-19/immunology , Female , Guidelines as Topic , Humans , Immunoglobulin G/analysis , Immunoglobulin M/analysis , Male , Middle Aged , Respiratory System/virology , Retrospective Studies , SARS-CoV-2/immunology , Virus Shedding
13.
BMC Infect Dis ; 20(1): 963, 2020 Dec 21.
Article in English | MEDLINE | ID: covidwho-992450

ABSTRACT

BACKGROUND: COVID-19 is highly contagious, and the crude mortality rate could reach 49% in critical patients. Inflammation concerns on disease progression. This study analyzed blood inflammation indicators among mild, severe and critical patients, helping to identify severe or critical patients early. METHODS: In this cross-sectional study, 100 patients were included and divided into mild, severe or critical groups according to disease condition. Correlation of peripheral blood inflammation-related indicators with disease criticality was analyzed. Cut-off values for critically ill patients were speculated through the ROC curve. RESULTS: Significantly, disease severity was associated with age (R = -0.564, P < 0.001), interleukin-2 receptor (IL2R) (R = -0.534, P < 0.001), interleukin-6 (IL-6) (R = -0.535, P < 0.001), interleukin-8 (IL-8) (R = -0.308, P < 0.001), interleukin-10 (IL-10) (R = -0.422, P < 0.001), tumor necrosis factor α (TNFα) (R = -0.322, P < 0.001), C-reactive protein (CRP) (R = -0.604, P < 0.001), ferroprotein (R = -0.508, P < 0.001), procalcitonin (R = -0.650, P < 0.001), white cell counts (WBC) (R = -0.54, P < 0.001), lymphocyte counts (LC) (R = 0.56, P < 0.001), neutrophil count (NC) (R = -0.585, P < 0.001) and eosinophil counts (EC) (R = 0.299, P < 0.001). With IL2R > 793.5 U/mL or CRP > 30.7 ng/mL, the progress of COVID-19 to critical stage should be closely observed and possibly prevented. CONCLUSIONS: Inflammation is closely related to severity of COVID-19, and IL-6 and TNFα might be promising therapeutic targets.


Subject(s)
COVID-19/diagnosis , Inflammation/complications , Adult , Aged , Area Under Curve , C-Reactive Protein/metabolism , COVID-19/immunology , Cross-Sectional Studies , Female , Humans , Inflammation/immunology , Interleukin-10/blood , Interleukin-6/blood , Interleukin-8/blood , Leukocyte Count , Lymphocyte Count , Male , Middle Aged , Procalcitonin/blood , ROC Curve , Retrospective Studies , Severity of Illness Index , Tumor Necrosis Factor-alpha/blood
14.
Am J Reprod Immunol ; 84(5): e13304, 2020 11.
Article in English | MEDLINE | ID: covidwho-960753

ABSTRACT

Caused by a novel type of virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) constitutes a global public health emergency. Pregnant women are considered to have a higher risk of severe morbidity and even mortality due to their susceptibility to respiratory pathogens and their particular immunologic state. Several studies assessing SARS-CoV-2 infection during pregnancy reported adverse pregnancy outcomes in patients with severe conditions, including spontaneous abortion, preterm labor, fetal distress, cesarean section, preterm birth, neonatal asphyxia, neonatal pneumonia, stillbirth, and neonatal death. However, whether these complications are causally related to SARS-CoV-2 infection is not clear. Here, we reviewed the scientific evidence supporting the contributing role of Treg/Th17 cell imbalance in the uncontrolled systemic inflammation characterizing severe cases of COVID-19. Based on the recognized harmful effects of these CD4+ T-cell subset imbalances in pregnancy, we speculated that SARS-CoV-2 infection might lead to adverse pregnancy outcomes through the deregulation of otherwise tightly regulated Treg/Th17 ratios, and to subsequent uncontrolled systemic inflammation. Moreover, we discuss the possibility of vertical transmission of COVID-19 from infected mothers to their infants, which could also explain adverse perinatal outcomes. Rigorous monitoring of pregnancies and appropriate measures should be taken to prevent and treat early eventual maternal and perinatal complications.


Subject(s)
COVID-19/immunology , Pregnancy Complications, Infectious/immunology , Pregnancy/immunology , SARS-CoV-2/physiology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , COVID-19/transmission , Female , Humans , Infectious Disease Transmission, Vertical , Pandemics , Pregnancy Outcome
15.
Psychother Psychosom ; 90(2): 127-136, 2021.
Article in English | MEDLINE | ID: covidwho-913881

ABSTRACT

BACKGROUND: As the fight against the COVID-19 epidemic continues, medical workers may have allostatic load. OBJECTIVE: During the reopening of society, medical and nonmedical workers were compared in terms of allostatic load. METHODS: An online study was performed; 3,590 Chinese subjects were analyzed. Socio-demographic variables, allostatic load, stress, abnormal illness behavior, global well-being, mental status, and social support were assessed. RESULTS: There was no difference in allostatic load in medical workers compared to nonmedical workers (15.8 vs. 17.8%; p = 0.22). Multivariate conditional logistic regression revealed that anxiety (OR = 1.24; 95% CI 1.18-1.31; p < 0.01), depression (OR = 1.23; 95% CI 1.17-1.29; p < 0.01), somatization (OR = 1.20; 95% CI 1.14-1.25; p < 0.01), hostility (OR = 1.24; 95% CI 1.18-1.30; p < 0.01), and abnormal illness behavior (OR = 1.49; 95% CI 1.34-1.66; p < 0.01) were positively associated with allostatic load, while objective support (OR = 0.84; 95% CI 0.78-0.89; p < 0.01), subjective support (OR = 0.84; 95% CI 0.80-0.88; p < 0.01), utilization of support (OR = 0.80; 95% CI 0.72-0.88; p < 0.01), social support (OR = 0.90; 95% CI 0.87-0.93; p < 0.01), and global well-being (OR = 0.30; 95% CI 0.22-0.41; p < 0.01) were negatively associated. CONCLUSIONS: In the post-COVID-19 epidemic time, medical and nonmedical workers had similar allostatic load. Psychological distress and abnormal illness behavior were risk factors for it, while social support could relieve it.


Subject(s)
Allostasis/physiology , Anxiety/physiopathology , COVID-19 , Depression/physiopathology , Health Personnel , Illness Behavior/physiology , Personal Satisfaction , Social Support , Stress, Psychological/physiopathology , Adult , China , Female , Humans , Male , Middle Aged , Occupations
16.
PeerJ ; 8: e9885, 2020.
Article in English | MEDLINE | ID: covidwho-761097

ABSTRACT

OBJECTIVES: Coronavirus Disease 2019 (COVID-19) has become a pandemic outbreak. Risk stratification at hospital admission is of vital importance for medical decision making and resource allocation. There is no sophisticated tool for this purpose. This study aimed to develop neural network models with predictors selected by genetic algorithms (GA). METHODS: This study was conducted in Wuhan Third Hospital from January 2020 to March 2020. Predictors were collected on day 1 of hospital admission. The primary outcome was the vital status at hospital discharge. Predictors were selected by using GA, and neural network models were built with the cross-validation method. The final neural network models were compared with conventional logistic regression models. RESULTS: A total of 246 patients with COVID-19 were included for analysis. The mortality rate was 17.1% (42/246). Non-survivors were significantly older (median (IQR): 69 (57, 77) vs. 55 (41, 63) years; p < 0.001), had higher high-sensitive troponin I (0.03 (0, 0.06) vs. 0 (0, 0.01) ng/L; p < 0.001), C-reactive protein (85.75 (57.39, 164.65) vs. 23.49 (10.1, 53.59) mg/L; p < 0.001), D-dimer (0.99 (0.44, 2.96) vs. 0.52 (0.26, 0.96) mg/L; p < 0.001), and α-hydroxybutyrate dehydrogenase (306.5 (268.75, 377.25) vs. 194.5 (160.75, 247.5); p < 0.001) and a lower level of lymphocyte count (0.74 (0.41, 0.96) vs. 0.98 (0.77, 1.26) × 109/L; p < 0.001) than survivors. The GA identified a 9-variable (NNet1) and a 32-variable model (NNet2). The NNet1 model was parsimonious with a cost on accuracy; the NNet2 model had the maximum accuracy. NNet1 (AUC: 0.806; 95% CI [0.693-0.919]) and NNet2 (AUC: 0.922; 95% CI [0.859-0.985]) outperformed the linear regression models. CONCLUSIONS: Our study included a cohort of COVID-19 patients. Several risk factors were identified considering both clinical and statistical significance. We further developed two neural network models, with the variables selected by using GA. The model performs much better than the conventional generalized linear models.

18.
Ann Rheum Dis ; 79(9): 1163-1169, 2020 09.
Article in English | MEDLINE | ID: covidwho-601964

ABSTRACT

OBJECTIVES: Increasing data about COVID-19 have been acquired from the general population. We aim to further evaluate the clinical characteristics of COVID-19 in patients with systemic autoimmune diseases (AIDs). METHODS: We included all confirmed inpatients with COVID-19 and systemic AIDs in Wuhan Tongji Hospital from 29 January to 8 March 2020. We retrospectively collected and analysed information on epidemiology of 1255 inpatients and additional clinical characteristics of patients with systemic AIDs. Outcomes were followed up until 16 April 2020. RESULTS: Of the 1255 patients with COVID-19, the median age was 64.0 years and 53.1% were male. More than half (63.0%) had chronic comorbidities. The proportions of elderly, male and patients with comorbidities were significantly higher in intensive care unit (ICU) than in the general ward (p<0.001). 17 (0.61%) patients with systemic AIDs were further screened and analysed from 2804 inpatients. The median age was 64.0 years and 82.4% were female. All patients were living in Wuhan and two family clusters were found. 1 (5.9%) patient was admitted to ICU and one died. 10 (62.5%) of 16 patients changed or stopped their anti-AIDs treatments during hospitalisation, and 5 of them felt that the disease had worsened after the quarantine. CONCLUSIONS: Older males with chronic comorbidities are more vulnerable to severe COVID-19. The lower proportion of COVID-19 in patients with systemic AIDs needs more high-quality human clinical trials and in-depth mechanism researches. Of note, the withdrawal of anti-AIDs treatments during hospitalisation can lead to flares of diseases.


Subject(s)
Autoimmune Diseases/epidemiology , Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Hospitalization/statistics & numerical data , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Adolescent , Adult , Aged , Autoimmune Diseases/virology , COVID-19 , China/epidemiology , Comorbidity , Coronavirus Infections/virology , Female , Humans , Inpatients/statistics & numerical data , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , Retrospective Studies , SARS-CoV-2 , Young Adult
20.
Psychother Psychosom ; 89(4): 242-250, 2020.
Article in English | MEDLINE | ID: covidwho-45795

ABSTRACT

OBJECTIVE: We explored whether medical health workers had more psychosocial problems than nonmedical health workers during the COVID-19 outbreak. METHODS: An online survey was run from February 19 to March 6, 2020; a total of 2,182 Chinese subjects participated. Mental health variables were assessed via the Insomnia Severity Index (ISI), the Symptom Check List-revised (SCL-90-R), and the Patient Health Questionnaire-4 (PHQ-4), which included a 2-item anxiety scale and a 2-item depression scale (PHQ-2). RESULTS: Compared with nonmedical health workers (n = 1,255), medical health workers (n = 927) had a higher prevalence of insomnia (38.4 vs. 30.5%, p < 0.01), anxiety (13.0 vs. 8.5%, p < 0.01), depression (12.2 vs. 9.5%; p< 0.04), somatization (1.6 vs. 0.4%; p < 0.01), and obsessive-compulsive symptoms (5.3 vs. 2.2%; p < 0.01). They also had higher total scores of ISI, GAD-2, PHQ-2, and SCL-90-R obsessive-compulsive symptoms (p ≤ 0.01). Among medical health workers, having organic disease was an independent factor for insomnia, anxiety, depression, somatization, and obsessive-compulsive symptoms (p < 0.05 or 0.01). Living in rural areas, being female, and being at risk of contact with COVID-19 patients were the most common risk factors for insomnia, anxiety, obsessive-compulsive symptoms, and depression (p < 0.01 or 0.05). Among nonmedical health workers, having organic disease was a risk factor for insomnia, depression, and obsessive-compulsive symptoms (p < 0.01 or 0.05). CONCLUSIONS: During the COVID-19 outbreak, medical health workers had psychosocial problems and risk factors for developing them. They were in need of attention and recovery programs.


Subject(s)
Anxiety/etiology , Coronavirus Infections/psychology , Depression/etiology , Health Personnel/psychology , Obsessive-Compulsive Disorder/etiology , Pneumonia, Viral/psychology , Sleep Initiation and Maintenance Disorders/etiology , Adolescent , Adult , Anxiety/epidemiology , COVID-19 , China/epidemiology , Cross-Sectional Studies , Depression/epidemiology , Female , Humans , Logistic Models , Male , Mental Health , Middle Aged , Multivariate Analysis , Obsessive-Compulsive Disorder/epidemiology , Pandemics , Prevalence , Sleep Initiation and Maintenance Disorders/epidemiology , Surveys and Questionnaires , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL